

# How to achieve optimal bifurcation stenting, use of 3D-OCT guide

Osaka Saiseikai Nakatsu Hospital, Japan Junya Shite, Ryoji Nagoshi Ymaguchi University Takayuki Okamura National Kyusyu Medical Center Yoshinobu Murasato



# <u>Disclosure</u>

# Junya Shite M.D. Consultant honoraria: Abbott Nipro Terumo



# How should we implant stent in bifurcation?

We should select single stenting with kissing balloon technique (KBT) as possible, otherwise two stenting with culotte etc.

For optimal stenting, full stent expansion, good apposition and less jailed struts at side branch orifice should be obtained.



In bifurcation, there is a vessel size change in main vessel at proximal and distal of side branch.

If the stent size selected to adjust proximal site, stent distal edge dissection and carina shift may happen. If the stent selected to adjust distal site, no edge dissection and no carina sift may happen, however, stent malapposition occurrs. Proximal optimization technique (POT) should be performed.





In LMT bifurcation, if we implant stent just size for LAD, remarkable malapposition happen at LMT. It is difficult to recross the GW distally because of straight form of stents. If the GW recrossed proximally,

LM

LCX











LMT After KBT, jailed struts move to opposite site of side branch, gets optimal result. LCX

## **3D-OCT gives image information**

- Stent apposition
- •Stent cell figure
- Location of stent link in relation to side branch orifice
- •GW recrossing position





Using specific off-line 3D-software provided by Dr. Okamura



#### Stent link disturbs side branch opening





Stent link did not locate at side branch orifice: Link Free type **Optimal GW recross** point: Distal cell close to carina investigators

investigators

## Link Free type





#### GW distal cell recross and KBT







## If the stent link locates closed to carina Link Connecting to carina type It is difficult to remove the jailed struts by KBT.



## Link Connecting to carina type GW recross distal cell



#### GW recross proximal cell









#### 3D-OCT Bifurcation Registry : Impact of 3D-OCT guided Optimal Side Branch Dilation on Residual Jailed Struts and Clinical Outcome at 9 Month

Takayuki Okamura, Ryoji Nagoshi, Tatsuhiro Fujimura, Yoshinobu Murasato, Masahiro Yamawaki, Shiro Ono, Takeshi Serikawa, Yutaka Hikichi, Hiroaki Norita, Fumiaki Nakao, Tomohiro Sakamoto, Toshiro Shinke, Junya Shite on behalf of the 3D-OCT Bifurcation Registry Investigators





# **3D-guide vs 2D-guide**

|                                        | All<br>(n = 105) | 3D-guide<br>(n = 55) | 2D-guide<br>(n = 50) | P value |
|----------------------------------------|------------------|----------------------|----------------------|---------|
| GW Distal recrossing (%)               | 87/105 (83)      | 50/55 (91)           | 37/50 (74)           | 0.0362  |
| Average recross times ( min-max times) | 1.3±0.6<br>(1-3) | 1.55±0.69<br>(1-3)   | 1.08±0.34<br>(1-3)   | <0.001  |
| ≥2 recross (%)                         | 27/105 (26)      | 24/55 (44)           | 3/50 (6)             | <0.001  |
| Contrast volume (ml)                   | $158 \pm 52$     | $146 \pm 46$         | $171 \pm 55$         | 0.0130  |
| Radiation time (min)                   | $34.1 \pm 16.5$  | $36.7 \pm 16.8$      | $31.2 \pm 15.8$      | 0.0911  |



# Factors contributing to incidence of jailed struts at side branch ostium

| Parameters                | Estimate | Standard Error | t value | p value | Standard Beta |
|---------------------------|----------|----------------|---------|---------|---------------|
| Link-connecting type      | 0.0289   | 0.0075         | 3.82    | 0.0002  | 0.3414        |
| GW not distal rewiring    | 0.0344   | 0.0098         | 3.50    | 0.0007  | 0.3098        |
| Angle SB-DMV              | 0.0007   | 0.0003         | 2.26    | 0.0261  | 0.1985        |
| PMV reference<br>diameter | 0.0195   | 0.0128         | 1.53    | 0.1301  | 0.1572        |
| No smoking                | 0.0108   | 0.0079         | 1.36    | 0.1757  | 0.1293        |
| Intercept                 | 0.0722   | 0.0424         | 1.70    | 0.0918  | 0             |
| Female                    | -0.010   | 0.0085         | -1.20   | 0.2324  | -0.1123       |
| No hypertension           | -0.017   | 0.0122         | -1.39   | 0.1680  | -0.1167       |
| SB balloon size           | -0.037   | 0.0202         | -1.87   | 0.0645  | -0.2014       |

#### Frequency of jailing configuration and GW rewiring position



#### **Clinical Outcome at 9 Month**

|                   | All    | Optimal | Suboptimal | P value |
|-------------------|--------|---------|------------|---------|
| n                 | 100    | 52      | 48         |         |
| MACE              | 6(6)   | 3(5.7)  | 3(6.3)     | 1.0000  |
| Death             | 1(1.0) | 0(0)    | 1(1.0)     | 0.4800  |
| Non fatal MI      | 0(0)   | 0(0)    | 0(0)       | -       |
| Revascularization |        |         |            |         |
| TVR               | 1(1.0) | 1(1.92) | 0(0)       | 1.0000  |
| TLR               | 4(4.0) | 2(3.9)  | 2(4.2)     | 1.0000  |
| Stent thrombosis  | 1(1.0) | 0(0)    | 1(1.0)     | 0.4800  |



### **Angiographic ISR at 9 Month**

|                    | All       | Optimal | Suboptimal | P value |
|--------------------|-----------|---------|------------|---------|
| n                  | 87        | 48      | 39         |         |
| ISR                | 12(13.8%) | 4(8.3%) | 8(20.5%)   | 0.1254  |
| PMV                | 0(0%)     | 0(0%)   | 0(0%)      | -       |
| DMV                | 1(1.1%)   | 1(2.1%) | 0(0%)      | 1.0000  |
| Side Br<br>Orifice | 12(13.8%) | 4(8.3%) | 8(20.5%)   | 0.1254  |



## **Representative Examples**

#### Optimal



Percent serial change in the SBOA= (8.94-7.02)/7.02 = 0.273

## **Representative Examples**



Percent serial change in the SBOA = (4.54-7.29)/7.29 = -0.377

#### Summary

- Achievement of distal GW recrossing under 3D-guidance was more frequent than under 2D-guidance, without significant increase of radiation time and contrast volume.
- The jailing configuration at the side branch ostium and the GW rewiring position before kissing ballooning were strongly associated with the incidence of residual jailed struts at side branch ostium.



#### Summary

- •There were no significant difference in clinical outcome at 9 month FU between optimal and suboptimal groups.
- •However, rate of angiographic ISR at side branch ostium in the suboptimal group tend to be higher than that of the optimal KBD group.



Feasibility and usefulness of three-dimensional optical coherence tomography guidance for optimal side branch treatment in coronary bifurcation stenting

International Journal of Cardiology, 250;270-274, 2018

Impact of Guidewire Recrossing Point into Stent Jailed Side-Branch for Optimal Kissing Ballooning Guided by 3D Optical Coherence Tomography

Euro Intervention 13; e1785-e1793, 2018

#### Now the Terumo or Abbott 3D-OCT software are available for bifurcation PCI guide in clinical practice





#### **OFDI guide LMT-LCx case**





#### **Stenting**





#### Recross1



















#### **Before POT**



#### After POT











#### <u>Final</u>













#### <u>8M F/U</u>





#### **8M Ultimaster**





A Novel Push-Fold Method for Removing Side Branch-Jailed Stent Struts Under 3D Optical Coherence Tomography Guidance

Ryoji Nagoshi, MD,a Takayuki Okamura, MD,<mark>b</mark> Junya Shite, Mda

JACC cardiovascular intervention 2016

#### Recross



#### Xience



## Balloon push-fold method



## Final 3D pullback from LAD





#### Final 3D pullback from Dx





#### Ultimaster push







# Summary of push method

2005/9~

- 32 lesions were attempt push method
- 28 lesions were able to evaluate stent strut shift by 3D-OCT
- Success rate of removing jailed struts at side branch orifice by push method was 64% (18/28)



| stent      | No | %     |
|------------|----|-------|
| Resolute   | 2  | 6.20% |
| R-onyx     | 6  | 19%   |
| Synergy    | 7  | 22%   |
| Ultimaster | 12 | 38%   |
| Xience     | 5  | 16%   |



3D-OCT guide bifurcation stenting is feasible and effective for optimal stenting.

To investigate an impact of optimal stenting on clinical outcome, a larger-scale study would be needed.



#### **Global Japanese 3D-OCT Bifurcation Registry**



# 3D-OCT will guide your bifurcation PCI

THE 20th ANNIVERSARY

## Thank you for your kind attention!

111

THE ...

#### 73-year-old female, Angina Pectoris case

















#### Dx stenting





#### **1**<sup>st</sup> Re-cross after Dx stenting















#### 2<sup>nd</sup> Re-cross after Dx stenting











#### Post KBI





#### LAD stenting











#### **Re-cross after LAD stenting**



















#### Final (pullback from LAD)



